Конспект лекций по математической статистике

Основные понятия математической статистики.

1.1 Задачи математической статистики

Математическая (или теоретическая) статистика опирается на методы и понятия теории вероятностей, но решает в каком-то смысле обратные задачи.
В теории вероятностей рассматриваются случайные величины с заданным распределением или случайные эксперименты, свойства которых целиком известны. Предмет теории вероятностей — свойства и взаимосвязи этих величин (распределений).
Но часто эксперимент представляет собой черный ящик, выдающий лишь некие результаты, по которым требуется сделать вывод о свойствах самого эксперимента. Наблюдатель имеет набор числовых (во всяком случае, их всегда можно сделать числовыми) результатов, полученных повторением одного и того же случайного эксперимента в одинаковых условиях. Примером такой серии экспериментов может служить социологический опрос, набор экономических показателей или, наконец, последовательность гербов и решек при тысячекратном подбрасывании монеты.
При этом возникают следующие вопросы:

1) Если мы наблюдаем одну случайную величину — как по набору ее значений в нескольких опытах сделать как можно более точный вывод о ее распределении?
2) Если мы наблюдаем одновременно проявление двух (или более) признаков, т.е. имеем набор значений нескольких случайных величин — что можно сказать об их зависимости? Есть она или нет? А если есть, то какова эта зависимость?
Часто бывает возможно высказать некие предположения о распределении, спрятанном в «черном ящике», или о его свойствах. В этом случае по опытным данным требуется подтвердить или опровергнуть эти предположения («гипотезы»). При этом надо помнить, что ответ «да» или «нет» может быть дан лишь с определенной степенью достоверности, и чем дольше мы можем продолжать эксперимент, тем точнее могут быть выводы (а это далеко не всегда возможно).
Итак, о (математической) статистике имеет смысл вспоминать, если
а) имеется случайный эксперимент, свойства которого частично или полностью незвестны,
б) мы умеем воспроизводить этот эксперимент в одних и тех же условиях некоторое (а лучше — какое угодно) число раз.
 

Скачать краткий конспект лекций по математической статистике. Автор Чернова.